Wired: Science of Swarms

How the Science of Swarms Can Help Us Fight Cancer and Predict the Future

By Ed Yong, March 19 2013.

The first thing to hit Iain Couzin when he walked into the Oxford lab where he kept his locusts was the smell, like a stale barn full of old hay. The second, third, and fourth things to hit him were locusts. The insects frequently escaped their cages and careened into the faces of scientists and lab techs. The room was hot and humid, and the constant commotion of 20,000 bugs produced a miasma of aerosolized insect exoskeleton. Many of the staff had to wear respirators to avoid developing severe allergies. “It wasn’t the easiest place to do science,” Couzin says.

In the mid-2000s that lab was, however, one of the only places on earth to do the kind of science Couzin wanted. He didn’t care about locusts, per se—Couzin studies collective behavior. That’s swarms, flocks, schools, colonies … anywhere the actions of individuals turn into the behaviors of a group. Biologists had already teased apart the anatomy of locusts in detail, describing their transition from wingless green loners at birth to flying black-and-yellow adults. But you could dissect one after another and still never figure out why they blacken the sky in mile-wide plagues. Few people had looked at how locusts swarm since the 1960s—it was, frankly, too hard. So no one knew how a small, chaotic group of stupid insects turned into a cloud of millions, united in one purpose.

Couzin would put groups of up to 120 juveniles into a sombrero-shaped arena he called the locust accelerator, letting them walk in circles around the rim for eight hours a day while an overhead camera filmed their movements and software mapped their positions and orientations. He eventually saw what he was looking for: At a certain density, the bugs would shift to cohesive, aligned clusters. And at a second critical point, the clusters would become a single marching army. Haphazard milling became rank-and-file—a prelude to their transformation into black-and-yellow adults.

That’s what happens in nature, but no one had ever induced these shifts in the lab—at least not in animals. In 1995 a Hungarian physicist named Tamás Vicsek and his colleagues devised a model to explain group behavior with a simple—almost rudimentary—condition: Every individual moving at a constant velocity matches its direction to that of its neighbors within a certain radius. As this hypothetical collective becomes bigger, it flips from a disordered throng to an organized swarm, just like Couzin’s locusts. It’s a phase transition, like water turning to ice. The individuals have no plan. They obey no instructions. But with the right if-then rules, order emerges.

Couzin wanted to know what if-then rules produced similar behaviors in living things. “We thought that maybe by being close to each other, they could transfer information,” Couzin says. But they weren’t communicating in a recognizable way. Some other dynamic had to be at work.

The answer turned out to be quite grisly. Every morning, Couzin would count the number of locusts he placed in the accelerator. In the evening, his colleague Jerome Buhl would count them as he took them out. But Buhl was finding fewer individuals than Couzin said he had started with. “I thought I was going mad,” Couzin says. “My credibility was at stake if I couldn’t even count the right number of locusts.”

When he replayed the video footage and zoomed in, he saw that the locusts were biting each other if they got too close. Some unlucky individuals were completely devoured. That was the key. Cannibalism, not cooperation, was aligning the swarm. Couzin figured out an elegant proof for the theory: “You can cut the nerve in their abdomen that lets them feel bites from behind, and you completely remove their capacity to swarm,” he says.

Couzin’s findings are an example of a phenomenon that has captured the imagination of researchers around the world. For more than a century people have tried to understand how individuals become unified groups. The hints were tantalizing—animals spontaneously generate the same formations that physicists observe in statistical models. There had to be underlying commonalities. The secrets of the swarm hinted at a whole new way of looking at the world.

But those secrets were hidden for decades. Science, in general, is a lot better at breaking complex things into tiny parts than it is at figuring out how tiny parts turn into complex things. When it came to figuring out collectives, nobody had the methods or the math. …

For complete article, see Ed Yong, Science of Swarms, Wired, March 19 2013.

(Emphasis added)